我国人力资源开发问题探析

来源 :理论探索 | 被引量 : 0次 | 上传用户:fyq20061001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前我国人力资源开发面临着五大转变:人口由高增长向低增长转变,劳动力由结构性短缺向总量短缺转变,近期总量过剩向远期总量短缺过渡,由年青型社会向老年社会转变,由低端劳动力为主向中高端劳动力为主转变。面对这五大转变,我国的人力资源开发利用现状却不容乐观,存在着人力资源浪费惊人,人力资源错配问题突出,人力资源可持续开发动力不足,人力资源城乡错位严重,人力资源配置区位矛盾突出,就业增长空间严重不足等问题。要提高人力资源开发的水平,必须保持经济健康快速地发展,鼓励企业长期用工和合理开发人力资源,积极调整教育结构和教
其他文献
泾县医院是一所县级二级甲等综合性医院,医院占地43亩,建筑面积39万平方米,拥有妇产儿童医院和榔桥中心卫生院两所分院,现有在岗职工495名,床位400张,设有临床、医技和职能科室共40
给出了复数域C上结合代数Cq「X,Y,X^-1,Y^-1」的导子代数的自同构群。
从拓扑分子格的半闭元理论出发,给出了拓扑分子格s-连通性的合理定义,并对s-连通性进行了系统刻画。此外,证得s-连通性既是不定广义序同态下不变的,又是s-同胚性质。
通过完备无限仿射李代数A∞的水平为1的不可约旋量表示给出了B∞的水平为2的不可约最高权表示。
给出了两种重要拓扑──商拓扑、弱拓扑提升后与超空间下商拓扑、弱拓扑相一致的某些结果。给出了提升映射连续的充分条件与充要条件及上下层映射在拓扑熵方面的关系。
提出并讨论了L_2(0,T)子空间上的三个最小范数问题,得到了这些问题的解,并给出了定理3在分布参数最优控制问题上的应用。
证明了任一连通的K1,r-Free图都有最大度小于等于r的生成树,并建立了算法。
给出了复数域上有限维Heisenberg代数H的导子李代数DerH,并证明了DerH为一个具有交换幂零根基的单完箅李代数。
从纯映射的角度出发,引入了L-fuzzy导算子的概念,研究了它与L-fuzzy拓扑间的关系,并进一步给出了诱导空间中导算子的各种表现。
中国农业银行博士后科研工作站面向海内外公开招收2010年度博士后研究人员。中国农业银行博士后科研工作站以研究探索现代商业银行改革发展中的前瞻性、战略性重大课题,推动商