论文部分内容阅读
为提高复杂背景和任意着装情况下的量体特征点定位精度,将堆叠沙漏网络(SHN)引入人体图像量体特征点定位中,并针对SHN模型输出特征图分辨率过低导致定位精度不足的问题,构建了一种Deconv-SHN模型。一方面用多个反卷积层代替初始模型的输出层以提高输出特征图的分辨率,另一方面基于Smooth L1和局部响应对目标函数进行了优化。在自建的6 700幅正面人体图像数据集上对Deconv-SHN模型、SHN模型以及传统算法进行实验的结果表明,DeconvSHN模型在复杂背景和任意着装情况下的特征点定位精度