论文部分内容阅读
提出用径向基函数(RBF)神经网络进行水轮发电机组效率曲线计算的方法,并建立了径向基函数神经网络模型,以有限水头下原型效率试验数据为样本进行训练,所得的网络可快速准确地计算任意水头下的效率特性曲线.与BP神经网络模型的对比结果表明,该方法避免了BP神经网络的局部极小及收敛速度慢等缺点,在精度、训练速度等方面优于BP神经网络.