应用人工神经网络估算伊朗Kharestan流域瞬时顶峰流量(英文)

来源 :Journal of Resources and Ecology | 被引量 : 0次 | 上传用户:bibby_514
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在水体工程及河流工程项目规划与设计中,瞬时顶峰流量是需要加以了解的最重要因素之一。本研究的目的是,在估算伊朗法尔斯省西北部Kharestan流域的瞬时顶峰流量时,对人工神经网络法与传统方法的功效进行对比。为此,采用了Jamal Beig水文站25年的日顶峰流量和瞬时顶峰流量数据。在Fuller、Sangal及Fill-Steiner经验方法以及人工神经网络方法的基础上进行了估算,并根据RMSE和R2进行了对比。结果显示,采用人工神经网络法的估算值比经验方法的更为精确,RMSE =13.710,R2= 0.942。这表明人工神经网络法比经验方法的误差更低。 In the planning and design of water projects and river engineering projects, the instantaneous peak flow is one of the most important factors that needs to be understood. The purpose of this study was to compare the effectiveness of the artificial neural network with that of the traditional method when estimating the instantaneous peak flow in the Kharestan basin in the northwestern part of Iran’s Farsh province. For this purpose, the 25-year peak daily flow and instantaneous peak flow data of the Jamal Beig hydrological station were used. Based on the Fuller, Sangal and Fill-Steiner empirical methods and the artificial neural network method, an estimation is made based on RMSE and R2. The results show that the artificial neural network method is more accurate than the empirical method, RMSE = 13.710, R2 = 0.942. This shows that the artificial neural network method is less error than the empirical method.
其他文献
期刊
紫两优737是福建省农业科学院水稻研究所利用母本紫392S与父本福恢737组配育成的紫糯两系杂交稻新品种,2019年通过云南省农作物品种审定.2018年在福建省农业科学院福州市综合
期刊
期刊
近年来,房地产行业在迎来发展机遇的同时,也面临着新的挑战.财务分析作为重要的企业分析工具,科学运用财务分析,能够通过企业报告看到企业情况,从而了解企业.本文以保利地产
期刊
期刊
期刊
期刊
期刊