论文部分内容阅读
Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell, and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.
Combining self-consistent-field theory and density-functional theory, we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles. Due to the amphiphilic nature, dimer particles tend to accumulate onto the interface of the copolymer micelle. increasing concentration of the symmetric dimer particles, which are made of two identical spherical particles, the micelle deforms from the initial sphere to ellipse, dumbbell, and finally separates into two micelles.Furthermore, asymmetric dimer particles, composed of two particles with different sizes, are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle. It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle. present study on the deformation of micelles is useful to understand the possible shape variation i n the course of cell division / fusion.