论文部分内容阅读
互联网上的用户生成内容UGC(User Generated Content)中蕴含的用户主观观点信息对分析用户行为、用户需求等工作有着重要的价值。设计一套基于自然语言理解的互联网UGC文本主观观点分析系统WSAM,该系统能挖掘出用户主观观点所蕴含的关注对象和主观成分。分析了互联网UGC现象和生成原因,总结出UGC中用户主观观点中的四种主要类型。挖掘用户主观观点过程中,将用户主观观点的挖掘转化为句子中主观观点关注对象的识别和主观成分的判断。算法结合基于词语类、结构类等相关特征,采用最大熵分类器挖掘用户