Composite electron transport layer for efficient N-I-P type monolithic perovskite/silicon tandem sol

来源 :能源化学 | 被引量 : 0次 | 上传用户:xsw2233
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Perovskite/silicon tandem solar cells (PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells.The efficiency of P-I-N type PSTSCs has sur-passed the single-junction limit,while the performance of N-I-P type PSTSCs is far below the theoretical value.Here,we developed a composite electron transport layer for N-I-P type monolithic PSTSCs with enhanced open-circuit voltage (Voc) and power conversion efficiency (PCE).Lithium chloride (LiCl) was added into the tin oxide (SnO2) precursor solution,which simultaneously passivated the defects and increased the electron injection driving force at the electron transfer layer (ETL)/perovskite interface.Eventually,we achieved monolithic PSTSCs with an efficiency of 25.42% and Voc of 1.92 V,which is the highest PCE and Voc in N-I-P type perovskite/Si tandem devices.This work on interface engineering for improving the PCE of monolithic PSTSCs may bring a new hot point about perovskite-based tandem devices.
其他文献
In the construction of high performance planar perovskite solar cells (PSCs),the modification of compact TiO2 layer and engineering of perovskite/TiO2 interfaces are essential for efficient electron transfer and retarded charge recombination loss.In this
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to i
Currently,the effective and clean suppression of lithium-ion battery (LIB) fires remains a challenge.The present work investigates the use of various inhibitor doses (Xin) of dodecafluoro-2-methylpentan-3-one(C6F12O) in 300 Ah LIBs,and systematically exam
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are pursued worldwide as effi-cient energy conversion devices.Great efforts have been made in the area of designing and developing phosphoric acid (PA)-based proton exchange membrane (PEM) o
With great superiorities in energy density,rate capability and structural stability,Na3V2(PO4)2F3 (NVPF)has attracted much attentions as cathode of sodium ion battery (SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the
The n-π* electronic transition in polymeric carbon nitride (PCN) can remarkably harvest visible light,which thus potentially promotes the photocatalytic hydrogen H2 generation.However,awaking the n-π* electronic transition has proven to be a grand challen
We report the synthesis of nitridation-induced NiFe-MOF through post-synthetic functionalization of ter-minal ligand in NiFe-MOF nanosheet.We directly identify the key factor of amino ligand in N-NiFe-MOF for boosting the OER performance through combining
Lithium-sulfur (Li-S) battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electrocatalytic surface is the first step to
Integrating the merits of long lifespan and excellent energy as well as power densities,potassium-ion hybrid capacitors (PIHCs) exhibit great prospects for future energy storage devices.To boost comprehen-sive performance of PIHCs,heteroatom-doping and mo
Perovskite solar cells have reached a power-conversion efficiency (PCE) of 25.6%,showing great potential with reliable moisture and heat stability.Most results are achieved on small-area devices,using conven-tional thin-film processing technologies like s