论文部分内容阅读
磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase,PEPC)是一种广泛存在于自然界中的代谢酶,在高等植物中参与光合作用的碳固定、生物合成前体的供应、p H的调控等多种生物学过程。本研究通过生物信息学方法,识别、筛选、获得蒺藜苜蓿(Medicago truncatula)PEPC(Mt PEPC)的氨基酸序列Medtr2g076670.2,并对与Medtr2g076670.2相似的25个豆科PEPC基因进行系统进化树分析。着重对4个Mt PEPCs和6个Gm PEPCs基因进行功能域分析、蛋白二级结构域预测及组织表达特异性分析,以推测蒺藜苜蓿PEPC基因的功能。结果表明,该10个基因分为两个Group分支,两个分支中存在不同的亚细胞定位信号,并且两个分支中大豆基因在地上和地下组织之间存在差异。通过蛋白相互作用的预测分析,PEPC蛋白可与苹果酸脱氢酶(malate dehydrogenase,MDH)、丙酮酸激酶(pyruvate kinase,PK)及2个未知蛋白存在相互作用;在碱胁迫下,Gs PEPCs基因与苹果酸脱氢酶基因是“共表达”基因。可以推测,PEPC对碱胁迫的反应,可能是通过调节有机酸含量实现的。通过对Mt PEPC蛋白和Gm PEPC蛋白的生物信息学分析,获得了其相应的分子生物学特征,为PEPC蛋白在碱胁迫反应中的功能提供理论依据。
Phosphoenolpyruvate carboxylase (PEPC) is a metabolic enzyme widely found in nature. It is involved in carbon fixation of photosynthesis, supply of biosynthetic precursors, regulation of p H, etc. in higher plants A variety of biological processes. In this study, the amino acid sequence Medtr2g076670.2 of Medicago truncatula PEPC (MtPEPC) was identified and screened by bioinformatics method. Phylogenetic analysis of 25 PFPC genes from Medtr2g076670.2 was carried out. . Focuses on four Mt PEPCs and six Gm PEPCs gene domain analysis, protein secondary domain prediction and tissue expression specificity analysis to speculate Medicago truncatula PEPC gene function. The results showed that the ten genes were divided into two Group branches, different subcellular localization signals existed in the two branches, and soybean genes in the two branches differed between above and below ground tissue. PEPC protein interacted with malate dehydrogenase (MDH), pyruvate kinase (PK) and two unknown proteins through the prediction of protein interaction. Under alkaline stress, the gene of Gs PEPCs The malate dehydrogenase gene is the “co-expression” gene. It can be speculated that the PEPC response to alkali stress may be achieved by adjusting the organic acid content. Through the bioinformatics analysis of MtPEPC protein and Gm PEPC protein, the corresponding molecular biological characteristics were obtained, which provided a theoretical basis for the function of PEPC protein in alkali stress response.