论文部分内容阅读
本文引入模糊控制机制,对文献「1」的具有正态模型网络参数的前馈式模糊神经网络学习算法进行改进,提出了一种效率更好的F-BP学习算法。在此算法中,采用近似模糊推理技术来确定网络的学习率、动量因子、加速系数三个学习参数,使得这些学习参数在网络的学习过程中,根据学习时间的长短、误差大小及误差变化情况,进行动态调整,从而提高学习效率。最后,通过实例考查了F-BP学习算法的性能,并讨论了学习参数的调整对学习