论文部分内容阅读
针对荞麦剥壳机调节运行参数时需要对出料口混合物中各种成分进行定量分析,而传统人工分析方法耗时且主观性强的问题,研究了一种基于主成分分析和BP神经网络的荞麦剥壳混合物识别方法。采集未剥壳荞麦、已剥壳完整荞麦米和破损荞麦米的图像,对图像进行预处理后,提取了每个单独籽粒图像的12个颜色特征、10个形状特征和18个纹理特征。使用主成分分析法将40个特征参数映射为5个综合特征作为输入参数,构造了一个5-11-3结构的单隐层BP神经网络对荞麦剥壳混合物进行识别,试验结果表明:该BP神经网络对未剥壳荞麦、已剥壳完