论文部分内容阅读
协同过滤算法是在众多应用领域中最成功的个性化推荐技术之一,但传统协同过滤算法不能及时反映用户的兴趣变化,致使预测结果不准确。针对这个不足,提出一种基于用户兴趣变化的改进协同过滤算法。改进算法提出一种基于时间的权重函数,用于研究用户在不同时间段的兴趣变化,通过用户兴趣之间的相似性,最后生成推荐结果。实验结果验证了改进算法在推荐的准确性方面得到显著提高。