论文部分内容阅读
对于两幅不同质量的图像,人眼视觉系统(Human Visual System,HVS)能够比较容易地区分两幅图像间的质量差异,因此通过模拟HVS来判断两幅图像的相对质量比给出图像的绝对质量分数更加准确。文中提出了一种用于评估图像间相对质量的CPNet(Compare-net)模型,该模型是一种分数无关类型的算法,利用图像组合的形式解决数据量的限制,相比绝对质量分数标签,提出的相对质量标签以及相对质量顺序标签具有更广阔的应用场景,并且获取方式更加方便、准确。首先,通过分析卷积神经网络结构相关参数对网络