论文部分内容阅读
基于回归最小均方支持向量机(LS-SVM),针对一类单输入单输出不确定非线性控制系统,提出了一种新的观测器的设计方法。在这个算法中,主要假设LS-SVM的最优逼近参数向量和标称参数向量之差的范数和逼近误差的界限是未知的。LS-SVM的最终解可以化为一个具有线性约束的二次规划问题,不存在局部极小;考虑到LS-SVM本身参数对LS-SVM性能的影响,文中利用贝叶斯证据框架对LS-SVM的参数进行优化和软测量建模,从而提高LS-SVM的逼近能力。理论研究和仿真例子证实了所提方法的可行性和有效性。