论文部分内容阅读
In a series of laboratory incubations using soils of two contrasting sites from a temperate marsh on the Qinghai-Tibet Plateau, potential methane (CH4) oxidation rates were measured to study the effects of inorganic N inputs on CH4 oxidation. For a drained site, subsurface peat (5-15 cm) at an initial 20 μL CH4 L-1 showed a significantly different (P < 0.05) CH4 oxidation rate compared to other soil depths, with a maximal rate of 20.9 ng CH4 gDW (dry weight)-1 h-1; the underlying mineral soil layers (15-30 and 30-50 cm) also had a strong CH4 oxidation capacity at about an initial 2000 μL CH4 L-1. With a waterlogged site, the CH4 oxidation rate in an aerobic incubation was significantly greater (P < 0.05) in the surface soil layer (0-5 cm) compared to the 15-30 and 30-50 cm depths. There was generally no or a very weak effect from addition of NO3- on CH4 oxidation. In marked contrast, NH4+ salts, such as (NH4)2SO4, NH4Cl and NH4NO3, exhibited strong inhibitions, which varied as a function of the added
In a series of laboratory incubations using soils of two contrasting sites from a temperate marsh on the Qinghai-Tibet Plateau, potential methane (CH4) oxidation rates were measured to study the effects of inorganic N inputs on CH4 oxidation. For a drained site, subsurface CH4 L-1 showed a significant difference (P <0.05) CH4 oxidation rate compared to other soil depths, with a maximal rate of 20.9 ng CH4 gDW -1 (dry weight) -1 h -1; the underlying mineral soil layers (15-30 and 30-50 cm) also had a strong CH4 oxidation capacity at about an initial 2000 μL CH4 L-1. With a waterlogged site, the CH4 oxidation rate in an aerobic incubation was significantly greater (P <0.05) in the surface soil layer (0-5 cm) compared to the 15-30 and 30-50 cm depths. There was generally no or a very weak effect from addition of NO3- on CH4 oxidation. In marked contrast, NH4 + salts, such as (NH4) 2SO4, NH4Cl and NH4NO3, labeled strong inhibitions, which varied as a func tion of the added