论文部分内容阅读
二维主成分分析(2DPCA)已被成功地应用在人脸识别领域,但是这种2DPCA是无监督方法,投影没有考虑到类别信息,在一定程度上影响了识别性能。因此提出一种新的2DPCA,它利用训练样本的类别标记来生成K-L变换的产生矩阵,融合了样本的类别信息,从而使2DPCA的识别性能更好。基于ORL和Yale人脸数据库的实验表明该方法比传统的2DPCA的识别性能更高。