论文部分内容阅读
由于任何一个复数的n次方根都均匀地分布在复平面上以原点为园心的同一园周上,因而复数中的许多问题都留有“循环”的痕迹,例如i~(4k)=1,i~(4k+1)=i,i~(4k+2)=-1,i~(4k+3)=-i(K∈J),这里,±1,±i正好是1的四个四次方根;又如,若令ω=(-1+(3~(1/2)i))/2,则ω~(3K)=1,ω~(3k+1)=ω,ω~(3k+2)=ω~2,其中1,ω,ω~2正好为1的三个三次方根。所以,复数中的许多问题都有明显的规律性。另一方面,复数与几何、三角、解析几何都有密切的关系,这便
Since any n root of any complex number is evenly distributed on the same circumference with the origin as the garden center on the complex plane, many problems in the complex number leave “circular” traces. For example, i~(4k)=1 i~(4k+1)=i,i~(4k+2)=-1,i~(4k+3)=-i(K∈J), here, ±1,±i is exactly one of four Four roots; for example, if ω=(-1+(3~(1/2)i))/2, then ω~(3K)=1, ω~(3k+1)=ω, ω~(3k+2)=ω~2, where 1,ω, ω~2 are exactly three cubic roots of 1. Therefore, many problems in the plural have obvious regularities. On the other hand, complex numbers have a close relationship with geometry, triangles, and analytic geometry.