论文部分内容阅读
铁路客运量数据受多种因素影响而呈现出非线性等特点,为了进一步提高其预测精度,文章提出了粒子群算法( PSO)优化支持向量机( SVM)的公路客运量预测模型。利用PSO寻优能力突出的优点,对支持向量机的参数进行了优化选择,并用优化后的支持向量机模型对公路客运量进行预测。研究结果显示,相比BP神经网络和传统的SVM预测方法,基于PSO-SVM的预测精度更高,从而表明了粒子群算法优化支持向量机的方法是有效的。