时间尺度上带超线性中立项的二阶时滞动力方程的振动性

来源 :数学物理学报 | 被引量 : 0次 | 上传用户:miaohaikun0
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文研究时间尺度上带超线性中立项的二阶时滞动力方程的振动性,运用Riccati变换和Bernoulli不等式等技巧,得到了该方程多个新的振动定理,推广和改进了已有文献中的相应结果,其中几个定理即使对于微分方程也是新的.最后该文分别给出相应的实例验证了所得定理的有效性.
其他文献
A conformal restriction measure is a probability measure which is used to de-scribe the law of a random connected subset in a simply connected domain that satisfies a certain conformal restriction property.Usually there are three kinds of conformal restri
In this paper,we mainly apply a new,asymptotic method to investigate the growth of meromorphic solutions of linear higher order difference equations and differential equations.We delete the condition (1.6) of Theorems E and F,yet obtain the same results f
In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of holomorphic curves and holomorphic ma
该文考虑了有界区域上一类带奇异非线性项(1-u)-2的四阶演化方程解的适定性.该模型具有很强的物理背景,它刻画了微机电模型的工作原理.首先,该文研究了四阶抛物方程解的适定性,该方程的适定性在文章[1]中通过半群理论得到验证,但是他们只限于区域空间维数为2维的情形.通过Faedo-Galerkin技巧,可以证明该方程在空间维数小于等于7的情形下解是适定的.
Assume that 0 < p < ∞ and that B is a connected nonempty open set in Rn,and that Ap(B) is the vector space of all holomorphic functions F in the tubular domains Rn + iB such that for any compact set K (C) B,‖y (→) ‖x (→) F(x + iy)‖Lp(Rn)‖L(K) < ∞,so Ap(B)
研究n(n≥2)维分数阶扩散的MHD-Boussinesq系统.当非负常数α,β及γ满足α≥1/2+n/4,α+β≥1+n/2及α+γ≥n/2时,利用能量方法,得到了MHD-Boussinesq系统全局解的存在唯一性,推广了已有的结果.
We revisit the intrinsic differential geometry of the Wasserstein space over a Riemannian manifold,due to a series of papers by Otto,Otto-Villani,Lott,Ambrosio-Gigli-Savaré,etc.
Let M be a smooth pseudoconvex hypersurface in Cn+1 whose Levi form has at most one degenerate eigenvalue.For any tangent vector field L of type (1,0),we prove the equality of the commutator type and the Levi form type associated to L.We also show that th
该文研究具有对数非线性项和粘性项的非线性抛物方程的初边值问题.在一些适当的条件下,得到弱解的全局存在性.关于爆破性方面,得到该方程的解在任何有限时刻不爆破.这与具有多项式非线性项和粘性项的抛物方程有所不同,在那种情况下,方程的解在有限时刻爆破.