Actively tunable dual-broadband graphene-based terahertz metamaterial absorber

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:zxqzxm88
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A tunable metamaterial absorber (MA) with dual-broadband and high absorption properties at terahertz (THz) fre-quencies is designed in this work.The MA consists of a periodic array of flower-like monolayer graphene patterns at top,a SiO2 dielectric spacer in middle,and a gold ground plane at the bottom.The simulation results demonstrate that the designed MA has two wide absorption bands with an absorption of over 90% in frequency ranges of 0.68 THz-l.63 THz and 3.34 THz-4.08 THz,and the corresponding relative bandwidths reach 82.3% and 20%,respectively.The peak absorp-tivity of the absorber can be dynamically controlled from less than 10% to nearly 100% by adjusting the graphene chemical potential from 0 eV to 0.9 eV.Furthermore,the designed absorber is polarization-insensitive and has good robustness to incident angles.Such a high-performance MA has broad application prospects in THz imaging,modulating,filtering,etc.
其他文献
We theoretically study the stationary entanglement of two charged nanomechanical oscillators coupling via Coulomb interaction in an optomechanical system with an additional Kerr medium.We show that the degree of entanglement be-tween two nanomechanical os
We report elastic cross sections for low-energy electron scattering with formamide-(H2O)n complexes (n =1,2) in the energy region of 0.01-8 eV.The scattering calculations are performed using the R-matrix method in the static-exchange(SE) approximation.We
Based on a new global potential energy surface of SiH2+(X2A1),the exact quantum dynamical calculation for the H(2S) + SiH+ (X1Σ+) → H2 + Si+ reaction has been carried out by using the Chebyshev wave packet method.The initial state specified (vi =0,Ji =0)
The dependence of Brillouin gain spectrum (BGS) characteristics,including the Brillouin frequency shift (BFS) and the BGS bandwidth,on germanium concentration in large-mode-area Ge-doped passive fibers is investigated theoretically and experimentally.The
A novel ghost imaging-based optical cryptosystem for multiple images using the integral property of the Fourier transform is proposed.Different from other multiple-image encryption schemes,we mainly construct the modulation patterns related to the plainte
We investigate the properties of fundamental,multi-peak,and multi-peaked twisted solitons in three types of finite waveguide lattices imprinted in photorefractive media with asymmetrical diffusion nonlinearity.Two opposite soliton self-bending signals are
Optical imaging deep inside scattering medium has always been one of the challenges in the field of bioimaging,which significantly drawbacks the employment of con-focal microscopy system.Although a variety of feedback techniques,such as acoustic or nonlin
Previous Monte Carlo simulations have shown that ordered tetratic phases can emerge in a dense two-dimensional Brownian system of rotationally asymmetric hard kites having 90° internal angles.However,there have been no exper-imental investigations yet to
We report a diode-pumped rod-type Yb∶YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb∶YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed in an actively Q-switched Yb∶YAG osci
According to the atmospheric pressure plasma (APP) technology,we propose a rapid synthetic approach of the sub-strates for enhanced Raman spectroscopy.The plasma is used to modify and etch the surface of silver film,which generates large scale hotspots\