论文部分内容阅读
光谱技术在生物和医学检测方面具有积极的应用前景。由于血液成分的复杂性和类同性,有关不同动物血液光谱识别分类的技术研究尚未出现较为完善的结论。基于机器学习理论,以BP神经网络为工具,建立了对不同动物血液荧光光谱进行特征提取和识别分类的方法。实验采用Cary Eclipse光谱仪分别采集了鸽、鸡、鼠、羊四种动物不同浓度(1%和3%)的全血与红细胞荧光光谱数据(每个类型样本各50组数据);基于移动平滑算法对原始数据进行了平滑处理,以减少实验仪器噪声对特征提取和识别分类的影响;进一步根据血液光谱数据的特性,该文出