论文部分内容阅读
为了提高图像分割精度和实用性,利用粗糙集和支持向量机优点,提出一种基于粗糙集和支持向量机相融合的图像分割算法。首先利用粗糙集图像区域特征进行约简,以降低特征向量维数,然后采用支持向量机对这些特征进行学习,建立图像分割模型,从而实现图像的分割。实验结果证明,该方法不仅提高了图像分割精度,大大缩短了训练时间,而且分割效果要优于常规图像分割算法,能够很好满足图像处理的实时性要求,为进行图像分割提供了一个新的研究思路。