论文部分内容阅读
本文提出了一种不完全数据的完全化方法,并进行了Monte-Carlo模拟。结果表明,对不完全数据进行完全化是必要的,完全化的结果优于不完全化,随机完全化优于非随机完全化。
In this paper, a complete method of incomplete data is proposed and Monte-Carlo simulation is performed. The results show that it is necessary to complete the incomplete data, the complete result is better than the incomplete one, and the randomized completeness is better than the non-randomized completeness.