【摘 要】
:
The ability to quantify optical properties (i.e., absorption and scattering) of strongly turbid media has major implications on the characterization of biological tissues, fluid fields, and many others. However, there are few methods that can provide wide
【机 构】
:
Beijing Advanced Innovation Center for Biomedical Engineering,Key Laboratory for Biomechanics and Me
论文部分内容阅读
The ability to quantify optical properties (i.e., absorption and scattering) of strongly turbid media has major implications on the characterization of biological tissues, fluid fields, and many others. However, there are few methods that can provide wide-field quantification of optical properties, and none is able to perform quantitative optical property imaging with high-speed (e.g., kilohertz) capabilities. Here we develop a new imaging modality termed halftone spatial frequency domain imaging (halftone-SFDI), which is approximately two orders of magnitude faster than the state-of-the-art, and provides kilohertz high-speed, label-free, non-contact, wide-field quantification for the optical properties of strongly turbid media. This method utilizes halftone binary patterned illumination to target the spatial frequency response of turbid media, which is then mapped to optical properties using model-based analysis. We validate the halftone-SFDI on an array of phantoms with a wide range of optical properties as well as in vivo human tissue. We demonstrate with an in vivo rat brain cortex imaging study, and show that halftone-SFDI can longitudinally monitor the absolute concentration as well as spatial distribution of functional chromophores in tissue. We also show that halftone-SFDI can spatially map dual-wavelength optical properties of a highly dynamic flow field at kilohertz speed. Together, these results highlight the potential of halftone-SFDI to enable new capabilities in fundamental research and translational studies including brain science and fluid dynamics.
其他文献
Efforts to mitigate the COVID-19 crisis revealed that fast, accurate, and scalable testing is crucial for curbing the current impact and that of future pandemics. We propose an optical method for directly imaging unlabeled viral particles and using deep l
Insightful knowledge on quantum nanostructured materials is paramount to engineer and exploit their vast gamut of applications. Here, a formalism based on the single-band effective mass equation was developed to determine the light absorption of colloidal
GeSn alloys are promising materials for CMOS-compatible mid-infrared lasers manufacturing. Indeed, Sn alloying and tensile strain can transform them into direct bandgap semiconductors. This growing laser technology however suffers from a number of limitat
Controlling the optical response of a medium through suitably tuned coherent electromagnetic fields is highly relevant in a number of potential applications, from all-optical modulators to optical storage devices. In particular, electromagnetically induce
The benchmark tin oxide (SnO2) electron transporting layers (ETLs) have enabled remarkable progress in planar perovskite solar cell (PSCs). However, the energy loss is still a challenge due to the lack of“hidden interface”control. We report a novel ligand
Various biological behaviors can only be observed in 3D at high speed over the long term with low phototoxicity. Light-field microscopy (LFM) provides an elegant compact solution to record 3D information in a tomographic manner simultaneously, which can f
Inelastic quantum mechanical tunneling of electrons across plasmonic tunnel junctions can lead to surface plasmon polariton (SPP) and photon emission. So far, the optical properties of such junctions have been controlled by changing the shape, or the type
The deep-level traps induced by charged defects at the grain boundaries (GBs) of polycrystalline organic–inorganic halide perovskite (OIHP) films serve as major recombination centres, which limit the device performance. Herein, we incorporate specially de
Collagen organization plays an important role in maintaining structural integrity and determining tissue function. Polarization-sensitive optical coherence tomography (PSOCT) is a promising noninvasive three-dimensional imaging tool for mapping collagen o
An invasive biopsy followed by histological staining is the benchmark for pathological diagnosis of skin tumors. The process is cumbersome and time-consuming, often leading to unnecessary biopsies and scars. Emerging noninvasive optical technologies such