论文部分内容阅读
基于2D特征的目标跟踪算法缺少3维信息,因此在目标尺度、姿态变化和平面旋转时会引起跟踪不稳定易丢失目标的问题,为此提出一种基于RGB-D的在线多示例学习目标跟踪算法。利用深度数据的特性在深度图中和RGB图中构建多尺度空间,提取多尺度的Haar-D特征和Haar特征;利用多实例学习策略将多尺度的Haar-D特征和Haar特征融合。实验结果表明,该算法能很好得处理室内或室外环境下目标姿态变化、平面旋转和部分遮挡的问题。