超声波辅助氧化改性钙基吸收剂的制备及性能研究

来源 :材料导报 | 被引量 : 0次 | 上传用户:yexianyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通过超声波辅助溶液浸渍的方法,将K2 S2 O8、Ca(ClO)2、(NH4)4 Ce(SO4)4及K2 Cr2 O7等氧化剂分别浸渍在钙基吸收剂表面,形成具有氧化性的活性位点,即氧化位点,改善钙基吸收剂脱除NOx的效果.通过正交实验,在不同超声波功率、浸渍时间和浸渍温度下,按照一定掺杂比例,利用氧化剂对钙基吸收剂进行化学调质.将改性后钙基吸收剂在固定床反应器上进行了同时脱硫脱硝实验,选择污染物的平均脱除率作为评价指标.正交实验结果表明:以Ca(ClO)2作为氧化剂进行超声波浸渍改性效果最好,最优改性工艺参数为氧化剂掺杂比例20%(质量分数,下同)、超声波功率100%、浸渍时间1.5 h、浸渍温度70℃.同时,基于晶相结构(XRD)分析和扫描电镜(SEM)显微形貌观测,可知超声波辅助氧化改性的方法能有效改善钙基吸收剂表面形貌,表面上形成了氧化位点,该氧化位点不仅能够增大吸收剂与SO2和NOx的接触,还能促进NO氧化为NO2,进一步提高SO2和NOx的脱除率.
其他文献
有机?无机杂化卤素钙钛矿晶体表面的缺陷浓度远高于其内部,严重影响了钙钛矿太阳能电池的光电转化效率和稳定性.通过开发多功能钝化剂可有效降低钙钛矿表面的缺陷密度,是进一步提高钙钛矿薄膜质量的一种有效途径.本研究中,我们首次应用了一种多功能的钝化材料:1?腈丙基?3?甲基咪唑氯盐,将其涂敷到钙钛矿表面可以同时钝化铅离子和碘离子缺陷,使载流子寿命延长两倍以上.最终,通过钝化甲脒铅碘钙钛矿表面,反式钙钛矿太阳能电池开路电压提高了40 mV,光电转化效率达到22.53%.同时,这种离子液体钝化处理使得太阳能电池的稳定
大晶粒UO2芯块相比于传统UO2芯块而言,具有更低的辐照肿胀、更低的裂变气体释放量以及优异的抗芯块-包壳相互作用的能力.大晶粒UO2芯块作为高燃耗、长换料周期新型燃料具有很大的应用潜力,近年来受到越来越多的关注.国内外学者针对大晶粒UO2芯块开展了大量的研究,包括芯块的微观结构、烧结特性以及辐照行为等,结果表明,大晶粒UO2芯块在高燃耗和长换料周期条件下表现出优异的堆内性能,在提高压水堆核电站的经济性的同时,可以有效提高其安全性.近年来,研究人员针对大晶粒UO2芯块在欧洲、美国、俄罗斯和中国等国开展了大量
电化学反应能直接将固体氧化物燃料电池(SOFC)中的化学能转换成电能,具有能量转化效率高、环境友好等优点,被认为是极具发展前途的新型高效能源发电技术.早期SOFC工作温度一般在800℃以上,这导致电池寿命缩短、材料成本增加.因此,低温化研发的推进有利于加快SOFC商品化的步伐,而其关键在于开发高性能的阴极材料.然而,工作温度的降低使得电池各组件的欧姆阻抗和极化阻抗急剧增大,尤其是阴极材料.因此,制备氧裂解催化性能高、极化阻抗低和化学稳定性好的阴极材料是提高SOFC电化学性能和长期稳定性的有效途径.大量研究
凹凸棒石(APT)一维纳米棒晶在功能载体方面具有广阔的应用前景.本研究在凹凸棒石表面负载ZnO纳米粒子的基础上,采用季铵化壳聚糖进行改性,通过调控复合材料表面电荷进而提升抗菌性能.采用XRD、FESEM、TEM、EDS和BET对ZnO/APT纳米复合材料进行结构表征,采用FTlR和Zeta电位对季铵化壳聚糖改性ZnO/APT纳米复合材料进行改性分析.研究结果表明,ZnO纳米粒子均匀担载在凹凸棒石表面,季铵化壳聚糖成功改性了ZnO/APT复合材料.最小抑菌浓度试验表明,5%季铵化壳聚糖改性ZnO/APT纳米
钇钡铜氧(YBCO)涂层导体因具有高临界转变温度(Tc)、高临界电流密度(Jc)和高不可逆场(Hirr)而成为最有应用前途的超导材料.但是,高昂的生产成本限制了YBCO带材的大规模应用.YBCO带材是在薄金属基带上通过外延生长的方法获得并具有良好结晶度和机械强度的超导涂层,而不是采用粉末套管法.金属有机沉积技术(MOD)是一种有效的超导层制备方法,与其他方法相比,它具有不需真空设备、可精确调节薄膜组分以及可实现批量生产等优点.因此,MOD在YBCO带材的生产中具有广阔的应用前景.传统MOD是以金属三氟乙酸
聚氨基酸是一类天然蛋白质模拟物,可以通过氨基酸-N-羧基环内酸酐开环聚合法制备.聚氨基酸凭借氨基酸结构多样性、独特的自组装结构和构象转变、高生物活性和良好的生物相容性,被广泛应用于生物材料领域.以自动加速、协同共价聚合为代表的开环聚合新方法为聚氨基酸材料的高效制备提供了保障.以α-螺旋、β-折叠聚氨基酸为基本结构单元的聚合物能自组装形成结构规整的纳米材料,为结构与功能仿生及生物应用奠定了基础.聚氨基酸能在酸碱度、光、热及氧化还原等条件下发生构象转变,材料二级结构的变化伴随着物理(如亲疏水性)、化学(如电荷
自从美国耶鲁大学科学家古德曼和吉尔曼偶然发现化合物氮芥能够使患有淋巴癌的小鼠肿块变小,从此开启了癌症药物治疗的新篇章.目前虽然已有大量药物被研发出来并成功用于临床肿瘤的诊断与治疗,但它们仍然存在如生物相容性不好、毒副作用大和耐药性等问题.因此,开发新型、高效的肿瘤诊疗药物迫在眉睫.近年来,研发智能化响应型肿瘤探针逐渐引起科学家们的兴趣.以肿瘤微环境特征因素(微酸、酶、氧化-还原物质、乏氧和信号分子等)和外源场(光、射线和超声等)等为刺激体,一大批刺激响应型肿瘤探针被设计和制备.研究结果表明这些探针不仅提高
目前,因为实验上点空位的精确测量调控对ZnO:Mn体系物理性质的影响具有挑战性,而第一性原理解决此问题有一定的优势,所以用第一性原理研究了Mn2+/3+/4+掺杂和氧空位或锌空位(VO/VZn)对ZnO的结构稳定性、电子结构和光学性质的影响.研究结果显示,所有体系在富氧条件下的形成能比富锌条件下的形成能低,说明ZnO:Mn在富氧条件下容易形成稳定结构.在Mn2+掺杂的含VO/VZn的ZnO体系中,VO价态越低,体系形成能越低,结构越稳定;而对于VZn价态则相反.在Mn2+/3+/4+掺杂的含中性空位(VO
近年来,纯有机室温磷光(RTP)材料由于具有长的激发态寿命、大的Stokes位移、丰富的激发态性质等特点而备受研究者的广泛关注.相较于重金属配合物或无机磷光材料,有机磷光材料的原料来源广、成本低、合成条件温和,兼具质轻、柔性、可大面积制备等诸多优势,室温磷光材料在数据加密、传感、有机电致发光、生物成像等领域展现出良好的应用前景.有机磷光材料具有长寿命发光和三线态发射的特征,利用时间分辨技术能有效扣除生物组织自身的背景荧光干扰,极大地提高生物传感和成像的灵敏度与信噪比,并通过与三线态氧气的TTA过程,有望实
碳化硅(SiC)材料在核能材料和半导体器件等领域有广泛的潜在应用,其辐照效应一直备受关注.结合动态恒温墙技术和恒温恒压热浴算法,本工作基于经典分子动力学模拟方法构建了单晶立方碳化硅(3C?SiC)的连续辐照模型,并研究了室温下连续几千次碰撞级联引起的SiC晶体损伤(对应的辐照剂量高达1 dpa),首次从微观上呈现了SiC从无缺陷到损伤饱和(彻底非晶化、肿胀达到极值)的完整过程.模拟发现持续辐照使得SiC密度明显降低,并储存了大量能量,其数值与文献中的实验结果比较接近.SiC非晶化过程可分为缓慢增长、快速增