论文部分内容阅读
利用高光谱大气红外探测仪AIRS模拟及观测数据,发展基于主成分分析技术的多层前馈神经网络反演算法,进行大气中水汽柱总量(IWV)的反演计算、模拟及实测验证。首先,基于全球晴空大气廓线训练样本SeeBorV4.0,利用快速辐射传输模式CRTM进行了辐射传输模拟计算,得到全球高光谱分辨率模拟辐亮度;其次,利用主成分分析技术对模式模拟和AIRS实测高光谱数据进行降维、去噪及去相关处理,并采用多层前向神经网络算法反演大气水汽柱总量;最后,利用数值试验、AIRS实测L1B数据及其水汽产品,对反演算法进行了验证