论文部分内容阅读
对称性在了解诸如原子核的转动、自旋和宇称、及同位旋等核结构性质中都起着重要的作用,并且使复杂的原子核结构问题得以简化。辛弱数就是由于原子核的对相互作用中的对称性所导出的众所周知的好量子数。通过对丰中子和缺中子核素及核素的高自旋态的衰变数据分析来揭示辛弱数的近似守恒性质。研究结果表明,在准幻核的高自旋同质异能素链中,无论所涉及的价空间的核子轨道有何不同,广义辛弱数总是近似的好量子数。
Symmetry plays an important role in understanding nuclear structural properties such as the rotation, spin and parity, and isospin of atomic nuclei, and simplifies complex nuclear structural problems. Symplectic weak numbers are the well-known good quantum numbers derived from the symmetry in the interaction of nuclei. The approximate conservation properties of symplectic weak numbers are revealed by analyzing the decay data of the high spin states of neutron and neutrino neutrons. The results show that the generalized weak singularity is always an approximate good quantum number in the quasi-illusionary hyper-spin isomorphous chains, no matter what the orbits involved in the valence space are.