论文部分内容阅读
基因芯片技术的发展为生物信息学带来了机遇,使在基因表达水平上进行癌症诊断成为可能。但基因芯片数据高维小样本的特征也使传统机器学习方法面临挑战。本文利用真实的基因表达数据,测试了目前主要的分类方法和降维方法在癌症诊断方面的效果,通过实验对比发现:基于线性核函数的支持向量机可以有效地分类肿瘤与非肿瘤的基因表达,从而为癌症诊断提供借鉴。