【摘 要】
:
目的眼底图像中的动静脉分类是许多系统性疾病风险评估的基础步骤。基于传统机器学习的方法操作复杂,且往往依赖于血管提取的结果,不能实现端到端的动静脉分类,而深度语义分割技术的发展使得端到端的动静脉分类成为可能。本文结合深度学习强大的特征提取能力,以提升动静脉分类精度为目的,提出了一种基于语义融合的动静脉分割模型SFU-Net(semantic fusion based U-Net)。方法针对动静脉分类
【机 构】
:
南开大学计算机学院,天津300350南开大学计算机学院,天津300350;天津市医药数据分析与统计研究重点实验室,天津300071;南开大学计算机学院,天津300350;北京上工医信科技有限公司,北京
论文部分内容阅读
目的眼底图像中的动静脉分类是许多系统性疾病风险评估的基础步骤。基于传统机器学习的方法操作复杂,且往往依赖于血管提取的结果,不能实现端到端的动静脉分类,而深度语义分割技术的发展使得端到端的动静脉分类成为可能。本文结合深度学习强大的特征提取能力,以提升动静脉分类精度为目的,提出了一种基于语义融合的动静脉分割模型SFU-Net(semantic fusion based U-Net)。方法针对动静脉分类任务的特殊性,本文采用多标签学习的策略来处理该问题,以降低优化难度。针对动静脉特征的高度相似性,本文以D
其他文献
目的放射治疗是鼻咽癌的主要治疗方式之一,精准的肿瘤靶区分割是提升肿瘤放疗控制率和减小放疗毒性的关键因素,但常用的手工勾画时间长且勾画者之间存在差异。本文探究Deeplabv3+卷积神经网络模型用于鼻咽癌原发肿瘤放疗靶区(primary tumor gross target volume,GTVp)自动分割的可行性。方法利用Deeplabv3+网络搭建端到端的自动分割框架,以150例已进行调强放射治
目的基于超声图像的乳腺病灶分割是实现乳腺癌计算机辅助诊断和定量分析的基本预处理步骤。由于乳腺超声图像病灶边缘通常较为模糊,而且缺乏大量已标注的分割图像,增加了基于深度学习的乳腺超声图像分割难度。本文提出一种混合监督双通道反馈U-Net(hybrid supervised dual-channel feedback U-Net,HSDF-U-Net)算法,提升乳腺超声图像分割的准确性。方法 HSDF
基于Gabor变换和小波变换提出了变窗Gabor变换,讨论了它的若干优良特性。变窗Gabor变换包含了Fourier变换,Gabor变换,小波变换,因此是上述变换的一般化,基于上述变换对变窗Gabor变换提出了不同的快速算法。实际应用
目的可穿戴设备能够长时间实时监测人体心脏状况,其在心电信号监测领域应用广泛。但目前仍没有公开的来自可穿戴设备的心电数据集,大部分心电信号分析算法都是针对医院设备所采集的心电数据。因此,本文使用IREALCARE 2.0柔性远程心电贴作为心电信号监测和采集设备制作了可穿戴设备的心电数据集。针对可穿戴心电数据干扰多、数据量大等特点,本文提出了一种针对可穿戴设备获得的心电信号进行自动分类的深层卷积神经网
目的传统的轨道检测算法受环境干扰因素大导致检测效率低,基于卷积神经网络(CNN)算法的轨道检测结果缺乏对于对象的细腻、独特刻画且过多依赖可视化后处理技术,因此本文提出一种结合多尺度信息的条件生成对抗网络(CGAN)轨道线检测算法。方法在生成器网络中采用多粒度结构将生成器分解为全局和局部两个部分;在判别器网络中采用多尺度共享卷积结构,进一步监督生成器的训练;引入蒙特卡罗搜索技术通过对生成器的中间状态
目的人脸超分辨率重建是特定应用领域的超分辨率问题,为了充分利用面部先验知识,提出一种基于多任务联合学习的深度人脸超分辨率重建算法。方法首先使用残差学习和对称式跨层连接网络提取低分辨率人脸的多层次特征,根据不同任务的学习难易程度设置损失权重和损失阈值,对网络进行多属性联合学习训练。然后使用感知损失函数衡量HR(high-resolution)图像与SR(super-resolution)图像在语义层
磁共振成像(MRI)作为一种典型的非侵入式成像技术,可产生高质量的无损伤和无颅骨伪影的脑影像,为脑肿瘤的诊断和治疗提供更为全面的信息,是脑肿瘤诊疗的主要技术手段。MRI脑肿瘤自动分割利用计算机技术从多模态脑影像中自动将肿瘤区(坏死区、水肿区、非增强肿瘤区和增强肿瘤区)和正常组织区进行分割和标注,对于辅助脑肿瘤的诊疗具有重要作用。本文对MRI脑肿瘤图像分割的深度学习方法进行了总结与分析,给出了各类方
No.19上海立佰趣信息科技有限公司综合得分16.7132012年营收(万元)2010-2012三年平均增长率预计未来三年营收平均增长率在第三方支付的市场上,陈晓峰面临的局面还不够明朗。
目的文档图像检索过程中,传统的光学字符识别(OCR)技术因易受文档图像质量和字体等相关因素的影响,难以达到有效检索的目的。关键词识别技术作为OCR技术的替代方案,不需经过繁琐的OCR识别,可直接对关键词进行检索。本文针对Harris算法聚簇现象严重和运算速度慢等问题,在关键词识别技术的框架下提出了改进Harris的图像匹配算法。方法基于Fast进行特征点检测,利用Harris进行特征描述,并采用非
西花蓟马Frankliniella occidentalis是世界性重要检疫性害虫之一,不仅直接取食危害作物而且传播病毒,从而造成极为严重的经济损失.由于西花蓟马在我国具有广泛的适生范围,随