论文部分内容阅读
A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the procedure are fully discussed. Firstly, unlike image formation algorithms operating in the frequency domain, a time domain algorithm requires the accurate global navigation satellite system (GNSS) time and position. This paper proposes acquisition of this information using a time-and-spatial transfer with precise ephemeris and interpolation. Secondly, synchronization errors and compensation methods in SS-BSAR are analyzed. Finally, taking the non-ideal factors in the echo and the compatibility of image formation algorithms into account, a matched filter based on the minimum delay is constructed. Experimental result using real data suggest the pre-processing is functioning properly.
First pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Operating in the frequency domain, a time domain algorithm requires the accurate global navigation satellite system (GNSS) time and position. This paper requires acquisition of this information using a time-and-spatial transfer with precise ephemeris and interpolation. Secondly, synchronization errors and compensation methods in SS-BSAR are analyzed. Finally, taking the non-ideal factors in the echo and the compatibility of image formation algorithms into account, a matched filter based on the minimum delay is constructed. Experimental result using real data suggest the pre- processing is functioning properly.