过表达tRNA基因tL(CAA)K提高酿酒酵母乙酸耐受性

来源 :生物工程学报 | 被引量 : 0次 | 上传用户:lianxirenll520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
乙酸是木质纤维素类生物质水解液中的常见毒性抑制物,选育乙酸耐受性好的酿酒酵母菌株,有利于高效利用木质纤维素类生物质,发酵生产生物燃料和生物基化学品.目前对酿酒酵母抗逆性的研究多集中在转录水平,但对转运RNA (Transfer RNA,tRNA)在耐受性中的作用研究较少.在对酿酒酵母抗逆性研究过程中发现,一些转运RNA基因在耐受性好的酿酒酵母菌株中转录明显上调.本文深入分析了精氨酸tRNA基因tR(ACG)D和亮氨酸tRNA基因tL(CAA)K过表达对酿酒酵母耐受木质纤维素水解液的影响.结果 表明,在4.2 g/L乙酸胁迫条件下进行乙醇发酵时,过表达tL(CAA)K的菌株生长和发酵性能均优于对照酵母菌株,乙醇生产强度比对照菌株提高了29.41%,但过表达tR(ACG)D基因的菌株生长和代谢能力较对照菌株明显降低,体现了不同tRNA的不同调控作用.进一步分析发现,过表达tL(CAA)K的重组酵母菌株乙酸耐受性调控相关基因HAA1、MSN2和MSN4等胁迫耐受性相关转录因子编码基因的转录水平上调.本文的研究为选育高效利用木质纤维素资源进行生物炼制的酵母菌株提供了新的改造策略,也为进一步揭示酿酒酵母tRNA基因表达调控对抗逆性的影响提供了基础.
其他文献
多巴胺是多种天然抗氧化药物生物合成的前体物质,在人体内作为神经递质调控中枢神经系统的多种生理功能,常用于多种类型休克的临床治疗.目前,通过微生物合成技术已经实现了多巴胺的从头合成,但是合成效率很低.针对该问题,在左旋多巴(L-DOPA)大肠杆菌工程菌基础上,利用不同拷贝数质粒表达野猪Sus scrofa来源的多巴脱羧酶基因Ssddc,实现了葡萄糖到多巴胺的生产.为了进一步提高多巴胺合成效率,从100个候选基因中筛选出5个多巴脱羧酶基因进行测试,其中来源于人Homo sapiens多巴脱羧酶基因Hsddc的
5-氨基乙酰丙酸(5-aminolevulinic acid,5-ALA)在医药和农业等领域有着广泛作用,目前主要采用大肠杆菌或谷氨酸棒杆菌以微生物发酵法合成.为了进一步提高谷氨酸棒杆菌合成5-ALA的能力,对其C4代谢途径进行了系统代谢改造.首先分别在谷氨酸棒杆菌中异源表达荚膜红杆菌和沼泽红假单胞菌的5-氨基乙酰丙酸合成酶ALAS,选择酶活相对较高的沼泽红假单胞菌的RphemA基因作为关键合成酶基因,并筛选到能显著增强RphemA的酶活性的核糖体结合位点RBS5.重组菌株ALAS的比酶活可达(221.8
双排桩支护组合体系作为一种新型悬臂类支护结构,其整体刚度的提升有利于保持基坑边侧的安全稳定.本文依托于张家口万全区某双排桩基坑支护工程案例,以现有双排桩冠梁刚度系数计算方法为基础,引入冠梁与连梁作用效应系数优化改进考虑连梁和冠梁作用的基坑矩形双排桩支护结构横向支撑刚度的计算方法,并对双梁组合支护体系下不同土性对双排桩前后排桩桩身最大横向位移的影响进行探讨.结果显示:(1)在双排桩结构计算中需考虑冠梁与连梁对双排支护桩的共同横向约束作用,并将冠梁与连梁的刚性连接作为一个整体以提高矩形双排桩双梁横向支撑刚度系
脱水应答元件结合蛋白(Dehydration-responsive element binding proteins,DREBs)是一类重要的植物耐逆相关转录因子.蒙古沙冬青Ammopiptanthus mongolicus是中国西北荒漠区特有的强耐逆常绿阔叶灌木.为探明其AmDREB1F基因在耐受非生物逆境中的功能和作用机理,文中对该基因编码蛋白的亚细胞定位、表达模式和转基因拟南芥的耐逆性进行了分析.结果 表明:AmDREB1F编码的蛋白质定位于细胞核内;在室内培养幼苗中,该基因在正常条件下不表达,在低
D-阿洛酮糖3-差向异构酶(D-allulose-3-epimerase)是异构化D-果糖生成D-阿洛酮糖(D-allulose)的关键酶.为提高D-阿洛酮糖3-差向异构酶的热稳定性并获得可重复使用的D-阿洛酮糖3-差向异构酶重组枯草芽孢杆菌固定化细胞,N端融合双亲短肽,通过聚丙烯酰胺凝胶电泳(SDS-PAGE)分析,异源D-阿洛酮糖3-差向异构酶在枯草芽孢杆菌中正确折叠,蛋白大小为33 kDa.40℃孵育48 h,SAP1-DSDPEase残余酶活仍保持在58%.固定化细胞最优条件为海藻酸钠浓度2%、二
羟基酪醇是重要精细化学品,作为天然抗氧化剂被广泛应用于食品、医药领域.利用合成生物学技术生产羟基酪醇具有重要意义.本文克隆并功能鉴定了来源于大肠杆菌Escherichia coli BL21的羟化酶编码基因HpaBC,结果表明该酶的两个亚基均能成功表达并能催化酪醇生成羟基酪醇.通过CRISPR-Cas9技术将由tac启动子调控的HpaBC基因表达盒整合到前期构建的酪醇高产菌株YMG5A*R基因组中,同时删除副产物乙酸的合成途径,获得大肠杆菌代谢工程菌株YMGRD1H1.摇瓶发酵实验结果表明,重组菌株能够直
自CRISPR/Cas9基因编辑系统成功应用于模式生物以来,因其快速、高效、便捷等特点,广泛应用于基因功能研究、基因治疗和基因工程等研究领域.与此同时,CRISPR/Cas系统不断在微生物界的发现也加速了新的基因编辑工具的不断涌现.CRISPR/Cpf1是第二类(Ⅴ型)能够编辑哺乳动物基因组的CRISPR系统,相比于CRISPR/Cas9基因编辑系统,能够利用5\'T-PAM富集区增加基因组覆盖率,具有其切割位点为粘性末端和更不易同源重组修复等诸多优势.基于此,本研究构建了能够在家蚕细胞表达的3个不同
喷司他丁是一种核苷类抗生素,对腺苷脱氨酶有极强的抑制效果,在临床治疗恶性肿瘤方面具有广泛应用.但其生产成本高、市售价格昂贵,难以满足需求.近10年来,关于生物合成喷司他丁的研究主要集中在菌种选育、优化培养基组分与发酵工艺等方面.目前,尽管喷司他丁的生物合成机制得到了阐明,但生物合成喷司他丁方面的综述尚无.对此,文中综述了喷司他丁的生物合成进展,为其进一步研究提供参考.首先,简介了喷司他丁的合成方法及其生产现状;其次,总结了喷司他丁在不同微生物中的生物合成机制;最后,探讨了生物合成喷司他丁所面临的问题,并提
2-羟基丁酸(2-hydroxybutyric acid,2-HBA)是合成生物可降解材料和各种药物的重要中间体,化学法合成的外消旋2-HBA需要去消旋才能获得光学纯对映异构体,应用于工业.文中通过在大肠杆菌Escherichia coli BL21(DE3)中共表达苏氨酸脱氨酶(Threonine deaminase,TD)、L-乳酸脱氢酶(L-lactate dehydrogenase,LDH)和甲酸脱氢酶(Formate dehydrogenase,FDH),构建(S)-2-HBA的合成途径及其辅因
苏氨酸醛缩酶催化醛和甘氨酸羟醛缩合,一步反应即可构建产物β-羟基-α-氨基酸的两个手性中心,从原子经济性和环境影响角度,是非常具有潜力的绿色合成光学纯β-羟基-α-氨基酸的方式之一.多个不同生物来源的苏氨酸醛缩酶得到分离和表征,较低的β-碳立体选择性以及反应过程中动力学和热力学控制难题,使其在合成应用中面临很大挑战.文中综述了近年来苏氨酸醛缩酶在基因挖掘、催化机理、高通量筛选与分子改造、合成应用等方面的研究进展,旨在为进一步研究提供参考.