论文部分内容阅读
目前输电杆塔的隐患识别通常采用无人机拍摄本体图像,再传输到后台进行分析。这样不利于快速定位隐患位置并及时处理。同时输电杆塔的缺陷检测和识别主要采用基于深度学习的目标检测和分类算法,计算量大,无人机终端的处理器难以达到实时检测的效果,对关键部位小微隐患的检测能力不佳。为了提升无人机在巡检过程中对输电杆塔本体小微隐患检测和分类的准确率和实时性,提出了利用FPN(特征金字塔网络)构建Faster R-CNN(区域卷积神经网络)检测模型的MGFF-KCD(关键部件检测的多粒度特征融合算法)来处理多个粒度的特