论文部分内容阅读
The microstructure and hardness of a 2024 aluminum alloy subjected to multi-pass upsetting extrusion at ambient temperature were studied. Experimental results indicated that with the number of upsetting extrusion passes increasing, the grains of the alloy are gradually refined and the hardness increases correspondingly. After ten passes of upsetting extrusion processing, the grain size decreases to less than 200 nm in diameter and the sample maintains its original shape, while the hardness is double owing to equal-axial ultrafine grains and work hardening effect caused by large plastic deformation.
The microstructure and hardness of a 2024 aluminum alloy subjected to multi-pass upsetting extrusion at ambient temperature were studied. The number of upsetting extrusion passes increasing, the grains of the alloy are gradually refined and the hardness increases correspondingly. After ten passes of upsetting extrusion processing, the grain size decreases to less than 200 nm in diameter and the sample maintains its original shape, while the hardness is double owing to equal-axial ultrafine grains and work hardening effect caused by large plastic deformation.