论文部分内容阅读
线性光谱混合模型(LinearSpectralMixingModel,LSMM)是一种像元分解模型,由于其简单和易操作性的特点,在目前亚像元研究中应用颇为广泛。其分离精度受多种因素的影响,但目前对该模型的研究多集中在对模型本身的线性假设评价及端元光谱选取方法上,而忽略了模型应用的环境条件(大气反射、散射、地形起伏等)对模型分解精度的影响等。本文以线性光谱模型提取植被分量为例,探讨环境大气条件、地形因素对模型精度影响的不确定性。研究将数据处理为四个层次,即原始的ASTER数据,利用MODTRAN进行大气校正