论文部分内容阅读
提出了一种基于高光谱与电子鼻融合的水果机械损伤识别方法。分别采用高光谱仪与电子鼻对无损伤、轻度机械损伤和重度机械损伤的番石榴进行采样,提取特征信息后,运用主成分分析(PCA)、线性判别分析(LDA)、欧氏距离分析(ED)和模糊C均值聚类(FCM)对高光谱仪、电子鼻以及高光谱与电子鼻融合3种识别方法的识别效果进行了对比。PCA和LDA的分析结果表明,高光谱与电子鼻识别番石榴机械损伤是可行的,但单独采用这两种识别方法均无法对番石榴机械损伤程度进行分级。采用高光谱与电子鼻融合方法,结合LDA分析可以较好地识别番