论文部分内容阅读
在解形如|f(x)|g(x)及|f(x)|g(x)的不等式时,往往会采取下列等价变换:|f(x)|g(x)g(x)0,-g(x)f(x)g(x).|f(x)|g(x)g(x)≥0,f(x)g(x)或f(x)-g(x);或g(x)0.这样做依据的是如下性质:不等式|x|a(a0)的解集是{x|-axa}.不等
When we solve the inequality of |f(x)|g(x) and |f(x)|g(x), the following equivalent transformations are often taken: |f(x)|g(x)g(x) ) 0, -g(x)f(x)g(x).|f(x)|g(x)g(x)≥0, f(x)g(x) or f(x)-g( x); or g(x)0. This is based on the following property: the inequality |x|a(a0) has a solution set of {x|-axa}.