论文部分内容阅读
为了提高最小二乘支持向量机(LSSVM)对多变量非高斯风压预测的精度和泛化能力,采用混合蚁群(ACO)和粒子群(PSO)智能算法优化LSSVM的正则化参数和核参数,从而形成了混合智能优化LSSVM(称为ACO+PSO-LSSVM)多变量非高斯风压预测算法。使用现场实测多变量非高斯风压数据,对ACO+PSO-LSSVM多变量非高斯风压预测算法的性能进行验证,并与基于蚁群(ACO)和粒子群(PSO)智能优化LSSVM(分别称为ACO-LSSVM和PSO-LSSVM)的预测结果进行比较。比较结果表明,对于多变量