Formation mechanism of gradient-distributed particles and their effects on grain structure in 01420

来源 :中南工业大学学报(英文版) | 被引量 : 0次 | 上传用户:feiyang_520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Fine-grained 01420 A1-Li alloy sheets were produced by thermo-mechanical processing based on the mechanism of particle stimulated nucleation of recrystallization. The thermo-mechanically processed sheets were observed to contain layers of different microstructures along the thickness. The precipitate behavior of the second phase particles and their effects on the distribution of dislocations and layered recrystallized grain structure were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffractometry(XRD). The formation mechanism of the gradient particles was discussed. The results show that after aging, a gradient distribution of large particles along the thickness is observed, the particles in the surface layer(SL) are distributed homogeneously, whereas those in the center layer(CL) are mainly distributed parallel to the rolling direction, and the volume fraction of the particles in the SL is higher than that in the CL. Subsequent rolling in the presence of layer-distributed particles results in a corresponding homogeneous distribution of highly strained regions in the SL and a banded distribution of them in CL, which is the main reason for the formation of layered grain structure along the thickness in the sheets.
其他文献
图G的(d,1)-全标号是对顶点和边的一个整数分配,使得图G中任意两个相邻的顶点得到不同的标号,任意两条相邻的边得到不同的标号,任意顶点和与它相关联的边得到的标号差的绝对
随着人类基因组计划的完成,生物序列数据与日俱增,分析和处理海量的生物数据,从中提取对人类有价值的信息.这些工作成为生物信息学首要的研究内容.本文的工作主要是:通过对数
在泛函分析的基础理论中,关于映射级数的收敛性的讨论,一般说来有两个方面.其一,针对各种形式的收敛(例如,子级数收敛,乘数收敛等),讨论相关的对偶不变量或者全程不变量.这一
脉冲微分方程起源于20世纪60年代,它是一种有效描述发展过程的微分方程。到现在为止经历了将近50年的研究,已得到深入的发展,它的理论比相应的微分方程更丰富,而且它更加准确刻画
磁流体力学以流体力学和电动力学为基础,把流场方程和电磁场方程联立起来,引进了许多新的特征过程,因而内容十分丰富。目前,磁流体力学同物理学的许多分支以及核能、化学、冶
学位
自适应有限元方法在偏微分方程的数值求解中得到了广泛的应用。其基本的思想就是用尽量少的自由度来获得比较高的数值精度。该方法的前提是构造有效的后验误差估计子,这是因
脉冲微分系统的研究始于20世纪60年代,研究资料表明它己渗透到信息科学、控制系统、生命科学等众多领域,具有非常重要的理论研究意义与实际应用价值.在本文中,首先我们借助Ly
本文首先简单介绍了分形中Hausdorff测度及网测度的定义和性质,以及分形测度的前沿研究。其中一个领域涉及多重形测度的定义和性质。本文就是在前人的研究的基础上发展了多重
填充与覆盖问题是图论中非常重要而又基本的问题,在物理学、计算机网络及组合优化等领域都有十分重要的意义.  本论文研究一类具有对偶性质的填充和覆盖问题: Ki,3-等可填充