论文部分内容阅读
SF6电气设备存在放电故障时,内部的sF6气体会分解成诸多衍生物,对设备的安全运行造成隐患.因此,通过SF6衍生物的状态可以推断设备的放电故障.在已有实验数据的基础上,将SF6衍生物的状态作为神经网络的输入,放电故障作为神经网络的输出,构建了基于概率神经网络的SF6电气设备故障诊断模型.实验表明,构建的模型对放电故障的预测达到88.23%,并与BP神经网络模型的预测结果进行了比较,证实了在SF6电气设备故障诊断的研究中,概率神经网络要优于BP神经网络.