论文部分内容阅读
为解决现有基于深度学习的超分辨算法模型没有充分利用各个层次的特征信息导致重建精度不高、参数量大的问题,提出了一个内外双重密集连接结构——密集跳跃注意连接网络。内层结构中,对原始密集级联结构进行改进,提出了通道可分密集级联块;外层结构采用密集残差连接结合注意力机制将由密集块提取的特征进行融合,从而达到更少卷积层、更高精度的效果。在多个基准数据集上测试,提出的网络较其他网络层数体量相近的算法精度更高、参数量更少。