论文部分内容阅读
为改善手写体汉字识别的性能,提出了一种基于正规化模糊神经网络的识别方法。针对网络结构的优化问题给出了网络模型的规则层节点的选取方法和相应的反传播学习规则。该算法能够充分利用专家制订的“if—then”规则,完善网络的推理结构,提高网络的识别能力,减少噪声因素的影响。实验表明此方法对手写体汉字识别问题具有良好的适应性和实用性。该方法指出了一条进一步提高手写体汉字系统性能的新途径。