论文部分内容阅读
核函数技术是机器学习领域应用广泛且非常有效的方法,采用核函数技术可以有效地解决在高维空间运算时遇到的维数灾难问题,不仅大大减少了在输入空间中的计算量还能够有效改善学习机的分类性能,核函数的选择以及核函数的构造一直是机器领域非常重要的问题,然而这方面的研究成果并不多。论文首先阐述了支持向量机的理论以及核函数的基本原理,介绍了目前应用比较广泛的核函数类型,考虑到局部核函数和全局核函数的优缺点并将两者结合组成新的核函数,使用改进的网格搜索法对构造核函数进行参数和组合系数进行寻优。最后将该算法应用到ORL人