论文部分内容阅读
针对传统3维Otsu(3D-Otsu)门限分割方法中的滤噪性能和小目标保持性能的不足,该文提出一种基于各向异性自适应高斯加权方向窗的3D-Otsu门限分割的新方法。新方法改进了3D-Otsu的邻域窗口设置方法,采用中心点的局部特征来自适应地确定邻域各向异性高斯加权方向窗口的尺寸、尺度和滤波方向。然后,提出非局部多方向相似度测量来更有效地捕捉图像中的模式冗余。最终,结合像素点灰度值、加权均值、加权中值构建3维直方图,并基于最大类间方差计算门限矢量进行分割。实验结果表明:与目前广泛使用的2维Otsu,2