论文部分内容阅读
本文用子波变换的方法描述了纹理图像多尺度、多方向的特性,提出了适合于纹理图像分类的新的子波特征。通过对其稳定性和视觉特性的详细分析,指出此特征优于传统的能量特征。文章最后结合九类自然纹理图像,分别基于标准子波特征,子波包特用BP神经网络进行了分类识别。实验结果表明,在无噪声情况下,对自然纹理图像可无误差分类;在有噪声情况下,正确分类识别率高,表现出强的稳定性。