论文部分内容阅读
随着人工智能的迅速发展及其广泛应用,人工智能安全也开始引起人们的关注,攻击者在正常样本中增加了细微的扰动,导致人工智能深度学习模型分类判断出现错误,这种行为称为对抗样本攻击。该文综述对抗样本攻击的研究现状,研究了对抗样本攻击的经典算法:FGSM、DeepFool、JSMA、CW,分析了这几种经典对抗算法的生成对抗样本的效率及其对深度学习模型的误导效果,为对抗样本检测和防御算法设计提供理论指导。