论文部分内容阅读
针对图像特征匹配过程中采集图像易受噪声、光照、尺度等因素影响使产生的匹配结果鲁棒性差、误匹配率高等问题,提出一种基于加权相似性度量(WSM)的特征匹配方法。该方法首先采用基于网格多密度聚类的特征匹配(FM_GMC)算法对原始图像进行特征聚类块划分;其次在每一特征聚类块中,采用Canny提取边缘特征点并使用尺度不变特征变换(SIFT)进行描述;然后采用加权的方式对特征聚类块之间的空间上下文信息间的Hausdorff距离、图像特征点外观描述子间的欧氏距离以及图像特征点的局部几何灰度信息的归一化互相关度量