论文部分内容阅读
Tikhonov正则化多分类支持向量机是一种将多分类问题简化为单个优化问题的新型支持向量机。由于Tikhonov正则化多分类支持向量机利用全部类别数据样本构建核函数矩阵,因此不适合大规模数据集的模式分类问题,鉴于该原因,一种稀疏Tikhonov正则化多分类支持向量机被建立,其训练算法首先构建样本重要性评价标准,在标准下通过迭代学习获取约简集,最后利用约简集构建核函数矩阵并训练支持向量机。仿真实验结果表明稀疏Tikhonov正则化多分类支持向量机在训练速度和稀疏性方面具有很大的优越性。