论文部分内容阅读
根据文献报道的实验数据分析了同构同阴离子稀土化合物的阳离子质量(m)和摩尔体积(V)分别对其晶格热容(C)的贡献.根据得到的数据提出了体积-质量近似公式:C_x=(1-f)·G_1+f·C_2+C_m·(m_x-m′_x),以估算稀土化合物的晶格热容。式中C_1和C_2分别为两个参考物质的晶格热容;f=(V_x-V_1)/(V_2-V_1);C_m为稀土化合物的阳离子质量变化1g时其摩尔(晶格)热容的变化,它与温度的关系被导出为:C_m=0.084e~(-0.0074T)-0.27e~(-0.065T);m_x和m′_x分别为待估算热容物质的阳离子质量和“假想”阳离子质量,m′_x=(1-f)·m_1+f·m_2。
According to the experimental data reported in the literature, the contributions of the cation mass (m) and the molar volume (V) of the isomorphic anions to the lattice heat capacity (C) were analyzed respectively. Based on the obtained data, a volume-mass approximation formula : C_x = (1-f) · G_1 + f · C_2 + C_m · (m_x-m’_x) to estimate the lattice heat capacity of the rare earth compound. Where C_1 and C_2 are the lattice heat capacities of the two reference materials, respectively; f = (V_x-V_1) / (V_2-V_1); C_m is the mole (lattice) heat capacity of the rare earth compound when the cation mass changes 1g C_m = 0.084e ~ (-0.0074T) -0.27e ~ (-0.065T); m_x and m’_x are the cations mass of the heat capacity material to be estimated and “hypothetical” Cation mass, m’_x = (1-f) · m_1 + f · m_2.