论文部分内容阅读
为提高粒子滤波在目标跟踪中的性能,将萤火虫算法(Firefly Algorithm,FA)的优化思想引入粒子滤波,并用自适应差分进化(Self-adaptive Differential Evolution,SaDE)算法代替粒子滤波的重采样,提出一种改进的粒子滤波跟踪算法,并采用新的跟踪特征HSV-iLBP进行跟踪.该算法将FA用于粒子滤波的重要性采样,通过计算迭代来抽取更加有效的粒子,并将粒子滤波的重采样过程看作求解目标函数的最值问题,通过自适应差分进化算法的迭代寻找最优粒子,改善粒子的退化和贫