论文部分内容阅读
提出一种基于模糊神经网络的彩色图像滤波方法.该方法将滤波窗口内的像素矢量作为模糊神经网络的输入,根据像素间的矢量距离进行模糊化,通过模糊推理实现对各个像素加权求均值,得到中心像素的输出.输入的模糊化和模糊推理参数由神经网络的自学习功能自动调整,实现最优的滤波效果.对样本图像的处理结果表明,该滤波方法对不同类型的噪声均有较好的滤波效果.